КАТАЛИЗ: ТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ - определение. Что такое КАТАЛИЗ: ТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое КАТАЛИЗ: ТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ - определение

Активатор (катализ)
Найдено результатов: 23
КАТАЛИЗ: ТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ      
К статье КАТАЛИЗ
Современные технологии невозможно представить без применения катализаторов. Каталитические реакции могут протекать при температурах до 650. С и давлениях 100 атм и более. Это заставляет по-новому решать проблемы, связанные с контактированием между газообразными и твердыми веществами и с переносом частиц катализатора. Чтобы процесс был эффективным, при его моделировании необходимо учитывать кинетические, термодинамические и гидродинамические аспекты. Здесь широко используются компьютерное моделирование, а также новые приборы и методы контроля за технологическими процессами.
В 1960 был достигнут значительный прогресс в производстве аммиака. Применение более активного катализатора позволило понизить температуру получения водорода при разложении водяного пара, благодаря чему удалось понизить давление и, следовательно, уменьшить производственные затраты, например за счет применения более дешевых центробежных компрессоров. В результате стоимость аммиака упала более чем вдвое, произошло колоссальное увеличение его производства, а в связи с этим - увеличение производства пищевых продуктов, поскольку аммиак - ценное удобрение.
Методы. Исследования в области катализа проводят с использованием как традиционных, так и специальных методов. Применяются радиоактивные метки, рентгеновская, инфракрасная и рамановская (КР) спектроскопия, электронно-микроскопические методы; проводятся кинетические измерения, изучается влияние способов получения катализаторов на их активность. Большое значение имеет определение площади поверхности катализатора по методу Брунауэра - Эммета - Теллера (метод БЭТ), основанному на измерении физической адсорбции азота при разных давлениях. Для этого определяют количество азота, необходимого для образования монослоя на поверхности катализатора, и, зная диаметр молекулы N2, вычисляют суммарную площадь. Помимо определения общей площади поверхности проводят хемосорбцию разных молекул, что позволяет оценить число активных центров и получить информацию об их свойствах.
В распоряжении исследователей имеются разные методы изучения структуры поверхности катализаторов на атомном уровне. Уникальную информацию позволяет получить метод EXAFS. Среди спектроскопических методов все шире применяются УФ-, рентгеновская и оже-фотоэлектронная спектроскопия. Большой интерес представляет масс-спектрометрия вторичных ионов и спектроскопия ионного рассеяния. Для исследования природы каталитических комплексов применяются измерения ЯМР. Сканирующий туннельный микроскоп позволяет увидеть расположение атомов на поверхности катализатора.
катализ         
  • Металлическая платина (показана стрелками), стабилизированная на носителе — оксиде алюминия
ИЗБИРАТЕЛЬНОЕ УСКОРЕНИЕ ОДНОГО ИЗ ВОЗМОЖНЫХ ТЕРМОДИНАМИЧЕСКИ РАЗРЕШЕННЫХ НАПРАВЛЕНИЙ ХИМИЧЕСКОЙ РЕАКЦИИ ПОД ДЕЙСТВИЕМ КАТАЛИЗАТОРА
Химия катализа; Катализация
КАТ'АЛИЗ, катализа, ·муж. (от ·греч. katalysis - роспуск) (·хим. ). Ускорение или замедление химической реакции под влиянием катализаторов.
Катализ         
  • Металлическая платина (показана стрелками), стабилизированная на носителе — оксиде алюминия
ИЗБИРАТЕЛЬНОЕ УСКОРЕНИЕ ОДНОГО ИЗ ВОЗМОЖНЫХ ТЕРМОДИНАМИЧЕСКИ РАЗРЕШЕННЫХ НАПРАВЛЕНИЙ ХИМИЧЕСКОЙ РЕАКЦИИ ПОД ДЕЙСТВИЕМ КАТАЛИЗАТОРА
Химия катализа; Катализация
Ката́лиз ( от «разрушение») — избирательное ускорение одного из возможных термодинамически разрешённых направлений химической реакции под действием катализатора(ов), который, согласно теории промежуточных соединений, многократно вступает в промежуточное химическое взаимодействие с участниками реакции и восстанавливает свой химический состав после каждого цикла промежуточных химических взаимодействий.Шмидт Ф.
катализ         
  • Металлическая платина (показана стрелками), стабилизированная на носителе — оксиде алюминия
ИЗБИРАТЕЛЬНОЕ УСКОРЕНИЕ ОДНОГО ИЗ ВОЗМОЖНЫХ ТЕРМОДИНАМИЧЕСКИ РАЗРЕШЕННЫХ НАПРАВЛЕНИЙ ХИМИЧЕСКОЙ РЕАКЦИИ ПОД ДЕЙСТВИЕМ КАТАЛИЗАТОРА
Химия катализа; Катализация
м.
Ускорение химической реакции под влиянием некоторых веществ.
Катализ         
  • Металлическая платина (показана стрелками), стабилизированная на носителе — оксиде алюминия
ИЗБИРАТЕЛЬНОЕ УСКОРЕНИЕ ОДНОГО ИЗ ВОЗМОЖНЫХ ТЕРМОДИНАМИЧЕСКИ РАЗРЕШЕННЫХ НАПРАВЛЕНИЙ ХИМИЧЕСКОЙ РЕАКЦИИ ПОД ДЕЙСТВИЕМ КАТАЛИЗАТОРА
Химия катализа; Катализация
(от греч. katálysis - разрушение)

изменение скорости химических реакций в присутствии веществ (катализаторов (См. Катализаторы)), вступающих в промежуточное химическое взаимодействие с реагирующими веществами, но восстанавливающих после каждого цикла промежуточных взаимодействий свой химический состав. Реакции с участием катализаторов называются каталитическими. Количество реагирующего вещества, которое может испытать превращение в присутствии определённого количества катализатора, не ограничивается какими-либо стехиометрическими соотношениями и может быть очень большим. Этим каталитические реакции отличаются от индуцируемых, или сопряжённых реакций (См. Сопряжённые реакции), когда одна реакция вызывается или ускоряется (индуцируется) другой и происходит необратимое превращение вещества-индуктора. Возможные изменения катализатора при каталитических реакциях являются результатом побочных процессов, ни в коей мере не обусловливающих каталитическое действие.

Воздействие катализатора открывает новый реакционный путь, обычно с большим числом стадий, на котором катализатор входит в состав активного комплекса (активированного комплекса (См. Активированный комплекс)) по крайней мере одной из стадий. Если при этом скорость реакции становится больше, чем в отсутствие катализатора, то К. называется положительным (его нередко отождествляют с общим понятием К.). Возможен и обратный случай, когда происходит отрицательный К.: в присутствии катализатора исключается один из возможных путей реакции и остаются лишь более медленные, в результате чего реакция замедляется или даже практически полностью подавляется (см. Антиокислители, Ингибиторы химические). Особый случай К. - ускорение реакции при воздействии продукта реакции или одного из промежуточных веществ, образующихся при реакции (см. Автокатализ).

К. не связан с изменением свободной энергии катализатора, и воздействие катализатора не может поэтому смещать положение равновесия химической реакции. Вблизи состояния равновесия катализаторы в равной степени ускоряют как прямую, так и обратную реакцию.

Основным фактором, определяющим скорость химического превращения, является энергия активации (Е) - разность энергий активного комплекса и исходных реагирующих молекул. Если предположить, что реакция не нарушает равновесного распределения энергии между молекулами, то вероятность образования активного комплекса, а следовательно, и скорость реакции в первом приближении пропорциональна exp (-E/RT), где R - газовая постоянная, Т - абсолютная температура. Отсюда следует, что скорость реакции тем больше, чем меньше Е, и вследствие экспоненциальной зависимости возрастает значительно даже при небольшом снижении Е. На рис. представлено изменение энергии при реакции без катализатора (кривая 1) и при участии катализатора (кривые 2 и 3). Кривая 2 с двумя максимумами соответствует образованию одного промежуточного продукта. Число стадий и промежуточных продуктов часто бывает значительно большим. Взаимодействие реагирующих веществ с катализатором может и не приводить к образованию стабильной формы промежуточного соединения (кривая 3). Но и в этом случае катализатор входит в состав активного комплекса и взаимодействие реагирующих веществ с катализатором определяет реакционный путь. Если энергии активных комплексов всех стадий реакционного пути с участием катализатора ниже энергии активного комплекса реакции без катализатора (т. е. , и E3 ниже E1), то участие катализатора приведёт к увеличению скорости (положительный К.). Во многих случаях К. ускорение реакции достигается благодаря появлению богатых энергией частиц в процессе самой реакции, причём их концентрация может превосходить равновесную (см. Цепные реакции). Например, каталитическое воздействие воды на окисление окиси углерода связано с развитием реакционных путей с участием гидроксильных групп и атомов водорода. Отрицательный К. часто связан с прекращением цепной реакции вследствие обрыва цепей при взаимодействии отрицательного катализатора с активными частицами. Примером может служить замедляющее влияние кислорода на соединение водорода с хлором.

Характер промежуточного химического взаимодействия при К. весьма разнообразен. Обычно различают две группы каталитических процессов: кислотно-основной (гетеролитический) и окислительно-восстановительный (гомолитический). В процессах первой группы происходит промежуточное кислотно-основное взаимодействие реагирующих веществ с катализатором, например переход протона от катализатора к реагирующим веществам или наоборот. На последующих стадиях протон перемещается в обратном направлении, и катализатор восстанавливает свой состав. При К. апротонными кислотами взаимодействие осуществляется через свободную пару электронов реагирующего вещества. Примерами кислотно-основного К. могут служить гидролиз сложных эфиров, ускоряемый кислотами; гидратация олефинов в присутствии фосфорно-кислотных катализаторов; изомеризация и крекинг углеводородов на алюмосиликатных катализаторах; алкилирование; полимеризация и многие другие реакции. При реакциях окислительно-восстановительного К. промежуточное взаимодействие связано с электронными переходами между катализатором и реагирующими веществами. К этой группе относятся окисление двуокиси серы в трёхокись в производстве серной кислоты; окисление аммиака до окиси азота при получении азотной кислоты; многочисленные процессы парциального окисления органических соединений, например этилена в окись этилена, нафталина во фталевый ангидрид; гидрогенизация; дегидрогенизация; циклизация и ароматизация углеводородов; разложение перекиси водорода и многие др. Каталитической активностью в отношении окислительно-восстановительных реакций обладают преимущественно металлы 4-, 5- и 6-го периодов системы Д. И. Менделеева, имеющие недостроенную d-оболочку электронов, их соединения и в меньшей мере соединения элементов с достраивающейся f-оболочкой (лантаноиды и актиноиды).

Рассмотренные группы далеко не охватывают всё разнообразие каталитических реакций. Характер промежуточного взаимодействия при К. гораздо более сложен и зависит от всех деталей электронной структуры как реагирующих веществ, так и катализатора. Конкретные механизмы каталитических реакций многообразны и пока лишь в немногих случаях твёрдо установлены.

В зависимости от фазового состояния реагирующих веществ и катализатора различают гомогенный и гетерогенный К. Промежуточное положение занимает микрогетерогенный К. в коллоидных системах (например, К. ферментами). При гомогенном К. катализатор и реагирующие вещества образуют одну однородную систему, границы раздела между катализатором и реагирующими веществами отсутствуют. При гетерогенном К. катализатор и реагирующие вещества находятся в разных фазах и отделены друг от друга границей раздела. Наиболее важны случаи, когда катализатор является твёрдым телом, а реакционная система образует жидкую или газообразную фазу. Промежуточное взаимодействие происходит при этом преимущественно на поверхности твёрдого катализатора.

Выбор состава катализатора для определённой реакции является очень сложной проблемой, решаемой пока главным образом эмпирическим путём. В СССР предложен и развит ряд теоретических подходов, основанных на корреляции отдельных частных свойств катализаторов с их активностью. Так, мультиплетная теория К. (первые публикации 1929) предполагает промежуточное взаимодействие реагирующих веществ с несколькими атомами на поверхности твёрдых катализаторов и придаёт решающее значение соответствию расстояний между атомами в молекулах реактантов и параметров кристаллической структуры катализатора. В дальнейшем теория была дополнена представлением о необходимости определённого соответствия энергий связей, разрывающихся и образующихся в результате реакции, и энергий связей реактантов с катализатором при промежуточном взаимодействии. Значительное распространение в 50-х гг. получило представление о зависимости каталитической активности твёрдых катализаторов, обладающих полупроводниковыми свойствами, от их электрических характеристик, - так называемая электронная теория К. По этой теории предполагается, что промежуточное взаимодействие реактантов с катализатором осуществляется при участии электронов проводимости твёрдого катализатора и поэтому зависит от его коллективных электронных свойств - расположения энергетических зон и локальных уровней электронов, работы выхода электрона, концентрации носителей тока и др. В гетерогенном К. широко использовалось предположение (выдвинутое в 1939) о существовании на поверхности твёрдых катализаторов особых активных центров, представляющих собой ребра, углы или различные структурные нарушения (дислокации) нормальной кристаллической структуры. Предполагалось также, что при нанесении каталитически активного вещества на инертный носитель особые каталитические свойства проявляют отдельно расположенные атомы или совокупности небольшого числа атомов - ансамбли.

Появление точных методов определения поверхности катализаторов позволило установить, что активность, отнесённая к единице поверхности (удельная каталитическая активность), определяется химическим составом и очень мало зависит от структурных дислокаций. Удельная каталитическая активность различных граней кристаллов иногда различается в несколько раз. Большое влияние на активность оказывают нарушения химического состава (отклонение от стехиометрии, внедрение примесей, локальные химические образования и т.п.).

В 60-е годы промежуточное химическое взаимодействие в гетерогенном К. рассматривается преимущественно как локальное, определяемое электронной структурой отдельных атомов или ионов каталитически активного компонента на поверхности катализатора с учётом влияния ближайшего окружения. Значительную помощь в развитии этого подхода оказала обнаруженная экспериментально аналогия в действии твёрдых катализаторов, содержащих определённый металл, при гетерогенном К. и растворимых комплексов, компонентом которых является тот же металл, при гомогенном К. в растворах. При этом используются теории кристаллического поля и поля лигандов, ещё ранее успешно применявшиеся в химии комплексных соединений. Для ряда классов катализаторов и каталитических реакций установлены корреляции между каталитической активностью и энергиями связей реактантов с катализатором при промежуточном взаимодействии, облегчающие в отдельных случаях подбор катализаторов.

Первые научные сведения о К. относятся к началу 19 в. В 1806 французские химики Н. Клеман и Ш. Дезорм открыли каталитическое действие окислов азота на окисление сернистого газа в камерном процессе получения серной кислоты, В 1811 русский химик К. С. Кирхгоф открыл, что разбавленные кислоты способны вызывать превращение крахмала в сахар (глюкозу); в 1814 им же было установлено, что эту реакцию может катализировать диастаза из ячменного солода, - так было положено начало изучению биологических катализаторов - ферментов. В 1818 французский химик Л. Тенар установил, что большое число твёрдых тел оказывает ускоряющее действие на разложение растворов перекиси водорода, а английский химик Г. Дэви открыл способность паров спирта и эфира окисляться кислородом на платине. В 1822 нем. химик И. Дёберейнер установил, что водород и кислород соединяются на платине при обычной температуре. За этим последовало открытие и ряда др. примеров резкого положительного действия веществ на скорость или возникновение химических реакций. Это привело к выделению особой группы явлений, названных нем. химиком Э. Мичерлихом контактными (1833) и швед. химиком И. Берцелиусом каталитическими (1835).

В дальнейшем было открыто большое число каталитических реакций, и за последние 50 лет К. стал ведущим методом осуществления химических реакций в промышленности. Применение катализаторов позволяет проводить химические превращения с высокими скоростями при небольших температурах - большинство промышленных каталитических процессов без катализаторов вообще не могло бы быть реализовано. Подбирая катализаторы, можно направлять химические превращение в сторону образования определённого продукта из ряда возможных. Применение стереоспецифичных катализаторов позволяет регулировать и строение конечных продуктов, например полимеров. С помощью К. в начале 20 в. была решена проблема фиксации азота воздуха. Промотированные железные и другие катализаторы позволили преодолеть химическую инертность элементарного азота и осуществить синтез аммиака. Одновременно был разработан каталитический метод получения азотной кислоты путём окисления аммиака на платиновых сетках. На каталитических реакциях основываются современные методы получения водорода из природного газа. Каталитические методы занимают господствующее положение и в технологии нефтепереработки. Сотни миллионов тонн высококачественного моторного топлива производятся с помощью каталитических реакций крекинга, гидрокрекинга, риформинга, циклизации и изомеризации углеводородов нефти. Особенно большую роль играют каталитические методы в осуществлении процессов органического синтеза. В нашей стране впервые в мире было разработано и реализовано производство синтетического каучука, основанное на превращении этилового спирта в дивинил с помощью многокомпонентного окисного катализатора Лебедева. Каталитические методы используются для получения подавляющего большинства продуктов нефтехимического синтеза: растворителей, ароматических углеводородов, мономеров для производства синтетических каучуков, синтетических волокон и др. полимерных материалов. Катализаторы широко используются и для полимеризации.

К. играет ведущую роль в химических превращениях в живой природе. Вся сложная система управления жизненными процессами в организмах основана на каталитических реакциях. Биологические катализаторы, называемые ферментами или энзимами, представляют собой вещества белковой природы с химически активными группами, часто включающими в свой состав атомы переходных элементов. По некоторым свойствам ферменты превосходят промышленные катализаторы. В СССР и за рубежом широко ведутся исследования новых типов сложных синтетических катализаторов - комплексных соединений, органических полупроводников, полимеров, характеризующихся более простым составом по сравнению с ферментами, но моделирующих в известной степени их действие. Науке о К. принадлежит существенная роль как в прогрессе химической промышленности, так и в раскрытии важнейших биологических закономерностей.

Лит.: Баландин А. А., Мультиплетная теория катализа, ч, 1-2, М., 1963-64; Волькенштейн Ф. Ф., Электронная теория катализа на полупроводниках, М., 1960: Catalysis, ed. P. Н. Ernmett, v. 1-7, N. Y., 1954-60; Ашмор П.., Катализ и ингибирование химических реакций, пер. с англ., М., 1966; Томас Дж., Томас У., Гетерогенный катализ, пер. с англ.. М., 1969; Киперман С. Л., Введение в кинетику гетерогенных каталитических реакций, М., 1964; Боресков Г. К., Катализ в производстве серной кислоты, М. - Л., 1954; Крылов О. В., Катализ неметаллами, Л., 1967; Основы предвидения каталитического действия. Труды IV Международного конгресса по катализу, т. 1-2, М., 1970.

Г. К. Боресков.

Изменение энергии реакционной системы вдоль пути реакции. А - исходное состояние; состояния, соответствующие образованию: В - промежуточного соединения, С - конечных продуктов, X1, X'2, Х"2, X3 - активных комплексов.

КАТАЛИЗ         
  • Металлическая платина (показана стрелками), стабилизированная на носителе — оксиде алюминия
ИЗБИРАТЕЛЬНОЕ УСКОРЕНИЕ ОДНОГО ИЗ ВОЗМОЖНЫХ ТЕРМОДИНАМИЧЕСКИ РАЗРЕШЕННЫХ НАПРАВЛЕНИЙ ХИМИЧЕСКОЙ РЕАКЦИИ ПОД ДЕЙСТВИЕМ КАТАЛИЗАТОРА
Химия катализа; Катализация
(от греч. katalysis - разрушение), ускорение химической реакции в присутствии веществ - катализаторов, которые взаимодействуют с реагентами, но в реакции не расходуются и не входят в состав продуктов. При гомогенном катализе исходные реагенты и катализатор находятся в одной фазе (газовой или жидкой), при гетерогенном - газообразные или жидкие реагенты взаимодействуют на поверхности твердого катализатора. Катализ обусловливает высокие скорости реакций при небольших температурах; предпочтительно образование определенного продукта из ряда возможных. Каталитические реакции являются основой многих химико-технологических процессов (напр., производства серной кислоты, некоторых полимеров, аммиака). Большинство процессов, происходящих в живых организмах, также являются каталитическими (ферментативными).
КАТАЛИЗ         
  • Металлическая платина (показана стрелками), стабилизированная на носителе — оксиде алюминия
ИЗБИРАТЕЛЬНОЕ УСКОРЕНИЕ ОДНОГО ИЗ ВОЗМОЖНЫХ ТЕРМОДИНАМИЧЕСКИ РАЗРЕШЕННЫХ НАПРАВЛЕНИЙ ХИМИЧЕСКОЙ РЕАКЦИИ ПОД ДЕЙСТВИЕМ КАТАЛИЗАТОРА
Химия катализа; Катализация
ускорение химических реакций под действием малых количеств веществ (катализаторов), которые сами в ходе реакции не изменяются. Каталитические процессы играют огромную роль в нашей жизни. Биологические катализаторы, называемые ферментами, участвуют в регуляции биохимических процессов. Без катализаторов не могли бы протекать многие промышленные процессы.
Важнейшее свойство катализаторов - селективность, т.е. способность увеличивать скорость лишь определенных химических реакций из многих возможных. Это позволяет осуществлять реакции, протекающие в обычных условиях слишком медленно, чтобы им можно было найти практическое применение, и обеспечивает образование нужных продуктов.
Применение катализаторов способствовало бурному развитию химической промышленности. Они широко используются при переработке нефти, получении различных продуктов, создании новых материалов (например, пластмасс), нередко более дешевых, чем применявшиеся прежде. Примерно 90% объема современного химического производства основано на каталитических процессах. Особую роль играют каталитические процессы в охране окружающей среды.
В 1835 шведский химик Й.Берцелиус установил, что в присутствии определенных веществ скорость некоторых химических реакций существенно возрастает. Для таких веществ он ввел термин "катализатор" (от греч. katalysis - расслабление). Как считал Берцелиус, катализаторы обладают особой способностью ослаблять связи между атомами в молекулах, участвующих в реакции, облегчая таким образом их взаимодействие. Большой вклад в развитие представлений о работе катализаторов внес немецкий физикохимик В.Оствальд, который в 1880 дал определение катализатора как вещества, которое изменяет скорость реакции.
Согласно современным представлениям, катализатор образует комплекс с реагирующими молекулами, стабилизируемый химическими связями. После перегруппировки этот комплекс диссоциирует с высвобождением продуктов и катализатора. Для мономолекулярной реакции превращения молекулы X в Y весь этот процесс можно представить в виде
X + Кат. . X-Кат. . Y-Кат. . Y + Кат.
Высвободившийся катализатор вновь связывается с X, и весь цикл многократно повторяется, обеспечивая образование больших количеств продукта - вещества Y.
Многие вещества при обычных условиях не вступают в химическую реакцию друг с другом. Так, водород и оксид углерода при комнатной температуре не взаимодействуют между собой, поскольку связь между атомами в молекуле H2 достаточно прочная и не разрывается при атаке молекулой CO. Катализатор сближает молекулы H2 и CO, образуя с ними связи. После перегруппировки комплекс катализатор - реагенты диссоциирует с образованием продукта, содержащего атомы C, H и O.
Нередко при взаимодействии одних и тех же веществ образуются разные продукты. Катализатор может направить процесс по пути, наиболее благоприятному для образования определенного продукта. Рассмотрим реакцию между CO и H2. В присутствии медьсодержащего катализатора практически единственным продуктом реакции является метанол:
Вначале молекулы СО и Н2 адсорбируются на поверхности катализатора. Затем молекулы СО образуют с катализатором химические связи (происходит хемосорбция), оставаясь в недиссоциированной форме. Молекулы водорода также хемосорбируются на поверхности катализатора, но при этом диссоциируют. В результате перегруппировки образуется переходный комплекс Н-Кат.-CH2OH. После присоединения атома H комплекс распадается с высвобождением CH3OH и катализатора.
В присутствии никелевого катализатора как СО, так и Н2 хемосорбируются на поверхности в диссоциированной форме, и образуется комплекс Кат.-СН3. Конечными продуктами реакции являются СН4 и Н2О:
Большинство каталитических реакций проводят при определенных давлении и температуре, пропуская реакционную смесь, находящуюся в газообразном или жидком состоянии, через реактор, заполненный частицами катализатора. Для описания условий проведения реакции и характеристики продуктов используются следующие понятия. Объемная скорость - объем газа или жидкости, проходящий через единицу объема катализатора в единицу времени. Каталитическая активность - количество реагентов, превращенных катализатором в продукты в единицу времени. Конверсия - доля вещества, превращенного в данной реакции. Селективность - отношение количества определенного продукта к суммарному количеству продуктов (обычно выражается в процентах). Выход - отношение количества данного продукта к количеству исходного материала (обычно выражается в процентах). Производительность - количество продуктов реакции, образующихся в единице объема в единицу времени.
См. также:
КАТАЛИЗ         
  • Металлическая платина (показана стрелками), стабилизированная на носителе — оксиде алюминия
ИЗБИРАТЕЛЬНОЕ УСКОРЕНИЕ ОДНОГО ИЗ ВОЗМОЖНЫХ ТЕРМОДИНАМИЧЕСКИ РАЗРЕШЕННЫХ НАПРАВЛЕНИЙ ХИМИЧЕСКОЙ РЕАКЦИИ ПОД ДЕЙСТВИЕМ КАТАЛИЗАТОРА
Химия катализа; Катализация
а, мн. нет, м.
Возбуждение химической реакции или изменение ее скорости небольшими добавками веществ-катализаторов. Катализный - относящийся к катализу.
Технологический процесс         

см. в ст. Технология.

Технологический процесс         
Технологи́ческий проце́сс (сокращенно ТП) — это система взаимосвязанных действий, выполняющихся с момента возникновения исходных данных до получения нужного результата.«Технологический процесс» — это часть производственного процесса, содержащая целенаправленные действия по изменению и (или) определению состояния предмета труда. К предметам труда относят заготовки

Википедия

Промотор (катализ)

Промотор (англ. promoter) — вещество, добавляемое к катализатору в небольших количествах с целью улучшения его свойств, таких, как активность, селективность или стабильность.

Что такое КАТАЛИЗ: ТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ - определение